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Seabed mapping for shallow waters Figure: Photogrammetric Vision Lab, Cyprrus
University of Technology 
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Shallow waters examples: Limassol marina, Cyprus 
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Clear and Shallow

Turbid and Shallow

Data: CUT, Photogrammetric Vis. Lab.
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Clear and Shallow

Turbid and Shallow

Data: CUT, Photogrammetric Vis. Lab.

Shallow waters examples: Latsi, Cyprus 
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Clear and Shallow

Clear and Deep

Data: CUT, Photogrammetric Vis. Lab.

Shallow waters examples: Agia Napa, Cyprus 
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Clear and Shallow

Turbid and Shallow

Turbid and 
Shallow

Clear and Deep

Shallow waters examples: Lemnos island, Greece
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Image source: Google Earth
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Clear and Shallow

Clear and Deep

Shallow waters examples: Andros island, Bahamas

Image source: Google Earth
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Clear and Shallow

Shallow waters examples: Wadden Sea, Netherlands-Germany
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Image source: Google Earth
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Turbid and Shallow Turbid and Shallow

Turbid and Shallow

Shallow waters examples: Ionian Sea, Greece
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Image source: Google Earth Image source: Google Earth

Image source: Google Earth
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Bathymetry via active and passive airborne remote sensing 
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Colour loss – light absorption 

Figure: Bianco et al., 2015
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Snell’s law

The law is based on Fermat's principle, also 
known as the principle of least time.

Fermat's principle states that the path
taken by a ray between two given points is
the path that can be traversed in the least
time.

Refraction effect

Snell's law states that the ratio of the sines
of the angles of incidence and refraction is
equivalent to the ratio of phase velocities in
the two media, or equivalent to the
reciprocal of the ratio of the indices of
refraction.

θ1

θ2
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Air/water interface reflection

Scattering/Absorption

Bottom reflection

The 3D position x of a water bottom point
is calculated by: 

where ∆tair and ∆twater correspond to the round-trip 
time of the laser beam in air and water, rair and 
rwater are the corresponding beam direction unit 
vectors and o is the scanner origin. 

Figure: Mandlburger et al., 2013. 

Airborne Laser Bathymetry - Geometry
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▪ Violation of the 
Collinearity Equation

▪ Apparent depths

Figure: Agrafiotis et al., 2020

Multi-media Photogrammetry – Single View Geometry
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▪ Violation of the Collinearity 
Equation

▪ Apparent depths

▪ Increased noise in the point 
clouds

Figure: Agrafiotis, 2020

Multi-media Photogrammetry – Multiple View Geometry
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▪ Analytical correction: modification of the collinearity equation.

▪ Image-space correction: re-projection of the original photo to correct the water 
refraction.

▪ Machine learning-based: depends on machine learning models that learn the 
underestimation of depths and predict the correct depth knowing only the apparent one.

Other methods: multiplying the apparent depth with a constant number, which in most of the 
cases is the refraction index of the water  the use of this form of correction might be 
acceptable in the very shallow waters, however, remarkable errors are expected after 2-3 m 
depth.

Multi-media Photogrammetry – Correction Basics
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Figures: Agrafiotis et al., 2020

Multi-media Photogrammetry – Image Space Correction
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Multi-media Photogrammetry – ML-based Correction

Agrafiotis et al., 2019:
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Figures: Agrafiotis et al., 2020
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Figures: Legleiter et al., 2018, 

Spectral-based bathymetry

Reference data

Multi-spectral data
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LT is the total upwelling radiance
Lp are the contributions from the atmosphere
Ls is the radiance reflected from the water surface
Lc is the radiance from the water column
Lb is the bottom-reflected radiance

Ls depends on the roughness of the water surface and sun position (sun glint)
Lb is related to depth and is the radiance reflected by the bottom
Lc is related to the water’s optical property (i.e. turbidity)

Slide retrieved from Mandlburger 2017, “Bathymetry from active and passive airborne remote sensing – looking back and ahead”

Basics of spectrally-based bathymetry
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• The standard linear algorithm (Lyzenga, 1978) 
assumes a log-linear relationship between reflectance 
(R(𝜆i )) and water depth (z):

• Stumpf et al., 2003 bathymetric algorithm
The method approximates “physics” of light in the 
water:

where m1 is a tunable constant to scale the ratio to depth, 
n is a fixed constant for all areas, and m0 is the offset for a 
depth of 0 m

pSDB “pseudo 
depth”

• Cluster-Based Method (CBR)

• SVMs

Common colour-to-depth relation/methodology

• Empirically tune coefficients
• Tuning successful with chart 

soundings/LiDAR etc.
• Generalized model
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Factors affecting Spectral-based bathymetry (UAV or SDB)
Sun glint • Turbidity • High Aerosol

Agrafiotis: Bathymetry from active and passive UAV-borne, airborne and satellite-borne remote sensing

Images source: Google Earth
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Figures: Caballero and Stumpf, 2020

Factors affecting Spectral-based bathymetry (UAV or SDB)
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Physics-based multi-scene processing to  improve the accuracy

Figures: Ilori and Knudby, 2020

Factors affecting Spectral-based bathymetry (UAV or SDB) -
Solution
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Data: CUT, Photogrammetric Vis. Lab.

Examples-Airborne Laser Bathymetry 

Bathymetric point clouds 
and 3D models
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Figure: TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020

Examples-Satellite-borne Laser Bathymetry 

Parrish

Figure: Parrish et al, 2019
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Figures: Geyman and Maloof, 2019

Examples-Spectral-based Bathymetry – Satellite-borne 
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Data: CUT, Photogrammetric Vis. Lab., 3[Deep]Vision https://3deepvision.eu/

Examples-UAV-borne Multimedia Photogrammetry
Orthoimage and 

isodepth lines

Bathymetric point clouds 
and 3D models

Semantic classification of 
the seabed
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Data: CUT, 
Photogrammetric 
Vis. Lab.

Examples-UAV-borne Multimedia Photogrammetry

Agrafiotis: Bathymetry from active and passive UAV-borne, airborne and satellite-borne remote sensing

Data: CUT, Photogrammetric Vis. Lab
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Differences between the uncorrected dense point clouds and the true depth data in 

relation to the true depth 

150m [DTM1] 200m [DTM1] 200m [DTM2] 

100% of the differences 

   

(a) (b) (c) 

95.4% of the differences with the highest density 

   

(d) (e) (f) 

 

1-1.5m

A deeper look into Multimedia Photogrammetry
Errors due to refraction

Figure: Agrafiotis, 2020
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Cross site approach

9m 2.5m

Ratio-based  VS  ML-based refraction correction methods

Figures and Table: Agrafiotis, 2020
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Horizontal error in depth direction reaching 0.182m-0.291m at 1.6m depth and 1.78m-2.07m
at 13.8m depth!
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Uncorrected Corrected Uncorrected Corrected

Errors in the orthoimages due to refraction

Figures: Agrafiotis et al., 2020
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By correcting the images from refraction, the texture of the 3D model is improved
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Improvements in texture

Figures and Table: Agrafiotis, 2020

Uncorrected Corrected Uncorrected Corrected

Agrafiotis: Bathymetry from active and passive UAV-borne, airborne and satellite-borne remote sensing

Figures: Agrafiotis et al., 2020
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Key-point matching difficulties

Figures: Agrafiotis, 2020
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Passive

Active
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UAV-borne LiDAR

Satellite-borne 
Spectral 

bathymetry

High Spatial 
Resolution
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UAV

Airborne/UAV-
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Multi-media 
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Bathymetry via active and passive airborne remote sensing 
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Airborne Laser Bathymetry – refraction correction is necessary!
• Active method
• Geometric & radiometric (intensity)
• Measures the depth via round trip time measurement & Delivers bottom reflectance
• Independent from external illumination and availability of texture
• Spatial resolution limited by relatively large laser footprint (~50 cm) 
• Max depth ~ 3 Secchi

Multi-media photogrammetry - refraction correction is necessary!
• Passive method
• Geometric
• Requires texture to perform SfM-MVS
• Measured depth through triangulation &  Delivers colour information
• Delivers high point density in shallow water areas 
• Max depth ~ 1 Secchi

Spectrally based bathymetry
• No sophisticated geometry processing necessary
• Requires visibility of bottom features (similar to SfM-MVS, but not texture is required here)
• Can handle certain differences in substrate type and water clarity
• Requires ground-truth for calibrating coefficients
• Covers large areas (satellite)
• Max depth ~ 1 Secchi

Wrap up

ALL the geometric 
methods need 

refraction 
correction!!!

Agrafiotis: Bathymetry from active and passive UAV-borne, airborne and satellite-borne remote sensing
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